Publications

I maintain a set of freely available Google Earth Engine codes written in Python for data pre-processing and analysis tasks. For further research profiles, see my: Google Scholar, ResearchGate, and ORCID

Peer Reviewed Journal Articles

20T M Lenton, J F Abrams, A Bartsch, S Bathiany, C A Boulton, J E Buxton, A Conversi, A M Cunliffe, S Hebden, T Lavergne, B Poulter, A Shepherd, T Smith, D Swingedouw, R Winkelmann, and N Boers. “Remotely sensing potential climate change tipping points across scales.” Nature Communications 15, 343 (2024). https://doi.org/10.1038/s41467-023-44609-w
19L Blaschke, D Nian, S Bathiany, M Ben-Yami, T Smith, C Boulton, and N Boers. “Spatial correlation increase in single-sensor satellite data reveals loss of Amazon rainforest resilience. arXiv preprint arXiv:2310.18540 (2023). https://arxiv.org/abs/2310.18540
18Y Yang, Q You, T Smith, R Kelly, and S Kang. “Spatiotemporal dipole variations of spring snowmelt over Eurasia.” Atmospheric Research (2023). https://doi.org/10.1016/j.atmosres.2023.107042
17T Smith and N Boers. “Reliability of Vegetation Resilience Estimates Depends on Biomass Density.” Nature Ecology & Evolution (2023). https://doi.org/10.1038/s41559-023-02194-7
16T Schmidt, T Kuester, T Smith, and M Bochow. “Potential of Optical Spaceborne Sensors for the Differentiation of Plastics in the Environment”, Remote Sensing 15(8):2020 (2023). https://doi.org/10.3390/rs15082020
15T Smith, R.-M. Zotta, C. A. Boulton, T. M. Lenton, W. Dorigo, and N. Boers. “Reliability of Resilience Estimation based on Multi-Instrument Time Series”, Earth System Dynamics, 14, 173–183, https://doi.org/10.5194/esd-14-173-2023, 2023.
14T Smith and N Boers. “Global vegetation resilience linked to water availability and variability.” Nature Communications 14, 498 (2023). https://doi.org/10.1038/s41467-023-36207-7
13T Smith, D Traxl, and N Boers. “Empirical evidence for recent global shifts in vegetation resilience.” Nature Climate Change (2022). https://doi.org/10.1038/s41558-022-01352-2
12R Hering, M Hauptfleisch, M Jago, T Smith, S Kramer-Schadt, J Stiegler, and N Blaum. “Don’t stop me now: Managed fence gaps could allow migratory ungulates to track dynamic resources and reduce fence related energy loss.” Frontiers in Ecology and Evolution (2022). https://doi.org/10.3389/fevo.2022.907079
11F Atmani, B Bookhagen, T Smith. “Measuring Vegetation Heights and Their Seasonal Changes in the Western Namibian Savanna Using Spaceborne Lidars.” Remote Sensing 14, 2928. (2022). https://doi.org/10.3390/rs14122928
10T Smith, A Rheinwalt, and B Bookhagen. “Topography and Climate in the Upper Indus Basin: Mapping Elevation-Snow Cover Relationships.” Science of The Total Environment, 2021, 147363, ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2021.147363
9T Smith and B Bookhagen. (2020). “Climatic and Biotic Controls on Topographic Asymmetry at the Global Scale.” Journal of Geophysical Research: Earth Surface, 125, e2020JF005692. https://doi.org/10.1029/2020JF005692
8T Smith and B Bookhagen. “Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave Data.” Front. Earth Sci. (2020) 8:559175. https://doi.org/10.3389/feart.2020.559175
7T Smith, A Rheinwalt, and B Bookhagen. “Determining the Optimal Grid Resolution for Topographic Analysis on an Airborne Lidar Dataset’’, Earth Surface Dynamics 7 (2019): 475-489 https://doi.org/10.5194/esurf-7-475-2019
6T Smith and B Bookhagen. “Using passive microwave data to understand spatio-temporal trends and dynamics in snow-water storage in High Mountain Asia”, Proc. SPIE 10788, Active and Passive Microwave Remote Sensing for Environmental Monitoring II, 1078806 (9 October 2018) https://doi.org/10.1117/12.2323827
5T Smith and B Bookhagen. “Changes in seasonal snow water equivalent distribution in High Mountain Asia (1987 to 2009)’’, Science Advances 4 (2018): 1, https://doi.org/10.1126/sciadv.1701550
4T Smith, B Bookhagen, and A Rheinwalt. “Spatio-temporal Patterns of High Mountain Asia’s Snowmelt Season Identified with an Automated Snowmelt Detection Algorithm, 1987-2016’’, The Cryosphere 11 (2017): 2329-2343, https://doi.org/10.5194/tc-11-2329-2017
3T Smith and B Bookhagen. “Assessing uncertainty and sensor biases in passive microwave data across High Mountain Asia”, Remote Sensing of Environment 181 (2016): 174-185. https://doi.org/10.1016/j.rse.2016.03.037
2T Smith, B Bookhagen, and F Cannon. “Improving semi-automated glacier mapping with a multi-method approach: applications in central Asia”, The Cryosphere 9.5 (2015): 1747-1759. https://doi.org/10.5194/tc-9-1747-2015
1W Amidon, B Bookhagen, J-P Avouac, T Smith, D Rood. “Late Pleistocene Glacial Advances in the Western Tibet Interior”, Earth and Planetary Science Letters 381 (2013): 210-221. https://doi.org/10.1016/j.epsl.2013.08.041

Peer Reviewed Book chapters

2K Geißler, N Blaum, G von Maltitz, T Smith, B Bookhagen, H Wanke, M Hipondoka, E Hamunyelae, D Lohmann, D U Lüdtke, M Mbidzo, M Rauchecker, R Hering, K Irob, B Tietjen, A Marquart, F V Skhosana, T Herkenrath and S Uugulu. “Biodiversity and Ecosystem Functions in Southern African Savanna Rangelands: Threats, Impacts and Solutions.” in: von Maltitz, G.P., et al. Sustainability of Southern African Ecosystems under Global Change, Ecological Studies, vol 248, 2024. https://doi.org/10.1007/978-3-031-10948-5_15
1T Smith and B Bookhagen. “Chapter 7: Remotely sensed rain and snowfall in the Himalaya”, in: Dimri, A.P., Bookhagen, B., Stoffel, M., Yasunari, T. (Eds.): Himalayan Weather and Climate and their Impact on the Environment, Springer International Publishing, 2020. https://www.springer.com/gp/book/9783030296834

Technical Reports

2T Smith. Climate Vulnerability in Asia’s High Mountains: How climate change affects communities and ecosystems in Asia’s water towers. WWF: 2014. Web Link
1M Gale, J Kim, H Earle, A Clark, T Smith, K Peterson. Open File Report VG09-5 Bedrock Geologic Map of Charlotte, Vermont (Vermont Geologic Survey, 2009)

Data and Software

10T Smith and N Boers. (2023). Robustness of Global Vegetation Resilience Estimates (1.0). Zenodo. https://doi.org/10.5281/zenodo.7550255
9T Smith and N Boers. (2023). Global Vegetation Resilience Linked to Water Availability and Variability (1.0). Zenodo. https://doi.org/10.5281/zenodo.7436669
8T Smith and N Boers. (2022). Reliability of Resilience Estimation based on Multi-Instrument Time Series (1.0). Zenodo. https://doi.org/10.5281/zenodo.7009414
7T Smith, D Traxl, and N Boers. (2022). Empirical evidence for recent global shifts in vegetation resilience (1.0). Zenodo. https://doi.org/10.5281/zenodo.5816934
6T Smith and B Bookhagen (2021). Elevation-Snow Clusters for Glaciers and Watersheds in the Upper Indus Basin Region (Version v1.0). Zenodo. https://doi.org/10.5281/zenodo.4469473
5T Smith and B Bookhagen (2020). Global Climatic, Biotic, and Topographic Asymmetries (Version v1.0). Zenodo. https://doi.org/10.5281/zenodo.4019109
4T Smith (2020). Hillslope Asymmetry: Initial Release. Zenodo. https://doi.org/10.5281/zenodo.3839251
3T Smith and Bodo Bookhagen (2020). Snow Variables for High Mountain Asia (Version v1.0). Zenodo. http://doi.org/10.5281/zenodo.3898517
2T Smith, A Rheinwalt, and B Bookhagen (2019). TopoMetricUncertainty - Calculating Topographic Metric Uncertainty and Optimal Grid Resolution. V. 1.0. GFZ Data Services. https://doi.org/10.5880/fidgeo.2019.017
1T Smith and B Bookhagen (2017). Snowmelt Parameters, 1987-2016, High Mountain Asia. V. 1.0. GFZ Data Services. https://doi.org/10.5880/fidgeo.2017.006